AD-A217 099

oG ... copy - Z

AD

Technical Memorandum 15-89

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH
AND EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

Michael W. Thompson

October 1989
AMCMS Code 612716.H7000

DTIC
ELECTE
JANZ 6 199()D

U. S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland

Approved for public release;
distribution is unlimited. e

90 01 24 039

®DEC, PDP, UNIBUS, VAX, and VMS are registered trademarks of Digital Equipment
Corporation.

Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department
of the Army position unless so designated by other authorized documents.

Use of trade names in this report does not constitute an official endorsement
or approval-of the use of such commercial products.

UNCLASSIFIED

SECURITY CLLSSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

13, REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

 2b. DECLASSIFICATION / DOWNGRADING SCHCDULE

distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

Technical Memorandum 15-89
6a. NAME OF PERFORMING ORGANIZATION

6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicablzs)
SLCHE

Human Engineering Laboratory
6¢c. ADDRESS (City, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)

Aberdeen Proving Ground, Maryland 21005-5001

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL
ORGANIZATION (If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and 2iP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO.
6.2 1L162716AH7

m, vy Classification)
Sound Ef1 . ¢ »rator for Use With the Cockpit Research and Experimentation
Work Load oime t (Crews)
{727 PERSONAL AUTHOR(S)

Thompson, Michael W. ¢
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)

15. PAGE COUNT

Final FROM 70 1989, October 54
16. SUPPLEMENTARY NOTATION e
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP sound effects generator ,goise generation; .
01 03 03.12 digital sound geueration_;[g;one generation; Lo, T, /51*')
14 0?2 svnthesized sound' —..—~ hoise (see reverse side)s
19, ABSTRACT (Continue on reverse if necessary and identify by block number) /

.~ This manual describes the sound effects generator (SEG) developed for
Digital Equipment Corpératioﬂ UNIBUS computers. It provides the operational
and programming information for using the SEG on DEC VAX UNIBUS computers.
The SEG can produce a varciety of complex sounds through two independent
channels. Each channel is capable of producing noise and three tones with
mechanisms provided for mixing the noise and tones, controlling the amplitude
of each tone, and shaping the envelope of each channel for final output.
Being a register~oriented device, the SEG is ideal for real time appli-
cations, requiring very little computer processing time to generate and alter
sounds. The SEG is built on a single quad-height UNIBUS Foundation Module and
plugs directly into a small peripherals controller slot on the UNIBUS back
plane. Application programming is accomplished using FORTRAN callable
subroutines which initialize and alter the desired sounds. h?quwvdsf

21 ABSTRACT SECURITY CLASSIFICATION
Unclassified

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

CuncrassiFiepunumited BKSAME AS rRPT J oTIC USERS

22¢ OFFICE SYMBOL
SLCHE~SS-IR

22b TELEPHONE (Include Area Code)
(301)278-4478

22a. NAME OF RESPONSIBLE INDIVIDUAL
Technical Reports Office

SECURITY CLASSIFICATION OF THIS PAGE

}” UNCLASSIFIED

DD Form 1473, JUN 86 Previous editions are obsolete

AMCMS Code 612716.H7000 Technical Memorandum 15-89

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH AND
EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

Anoession For
Michael W. Thompson FTIS GRAAI g

DRIC TAB
Unannounded 0O
Justifieatien

»y.
Distvridution/

October 1989 Availapility Codes
Avail and/of
Dist Special

al |

uman Engineering Laboratory

Approved for public release;
distribution is unlimited.

U.S. ARMY HUMAN ENGINEERING LABORATORY
Aberdeen Proving Ground, Maryland 21005-5001

CONTENTS

INTRODUCTION ..c.ivvivviniinininniniinieennens OO PUPPPPI 3
GENERAL DESCRIPTIONiiiiuiiiiiiuiiisiniisniiniiiianiiiiiiesrsiasinisireisssisissseses 3
DETAILED DESCRIPTION....cciiiiiiiiiiriiminniiiiniimimisiimmiosssmosimimsiiiesssssmsssone 5
THEORY OF OPERATIONc.iiiiuiiiiiiiiiiiinininiiirenisinsieisiicssisinsssissssssasaseses 5
Programmable Sound Generator.......ccociiiiiiiiiiienimmmiiiniiemenne. 5
M1710 UNIBUS Foundation Module......cccoiviiiiiviniiiniiininiiiniiiniini. 10
SOUND EFFECTS GENERATOR USER'S GUIDE [T PN 17
Create and Map SECHON. ...uvviiiiiiiiiiiiiiiiiiiitiiirietieirieiteeisines sartsrensasions 17
Register RESEE...cviiiiiiiiiiiiiiiiiiiiiiiiiiiric e s e e s ea e 17
TONE SElECHON ...iviiiiiiiiiiiiiiiiiiiiiiir it tris s sssstebessasnacssaneasesns 18
INOISE SEIECHION 1uvviviiiniiiiiiiiiiiiiiiiiiiiiiii et str s s e sasaesens 18
MiXEr SEIECHON . .uvuviiiiiiiiiiiiiiiiiiriiiiitiiiniiiiieiiisstsirestsesnsasesnsasnsuersnsnenss 19
Amplitude Control....iviviiiiiiiiiiiniiiiiriniiriiiriiietiiieraiieinisticiertensreeensnessse 19
Envelope Generator Control.......ccccvvviiiiiiiiiiiniiiimiiiniiineneneee. 20
Reading PSG ReGISIErS. ..vuvuiuiiiiniiiiiiiiiiiiiiiiiiiiiiiiiineiiintesaseeneasaensenns 21
REFERENCES......iiiiiitiiiiiiiuiiniirinniireiiieiisiniastaseesieisrssessensmstssessnssnsasensenss 23
APPENDICES
A. Envelope Shape and Cycle Patterns..c....cooovviviiiiiiininiiiiiiniiiiinninnenn 25
B. Programmable Sound Generator Register Functions.......cccceeevieeenicinneennee 29
C. PSG Timing Diagram......ccocviuiriiiiiiiiiniiiiiiiiiniiiiininiiiesiniienenenes 33
D. Sound Effects Generator Programs 2~d Subroutingscvcocveeieneniinnenns 37
E. MACRO Source Code for FORTKAN Callable Subroutines.......ccccceeeuveneen. 41
F. FORTRAN Program EXamplec.cocuviuiiiiuiiiiiiiniiiiiininieininnineieen 59
FIGURES
1. Sound Effects Generator Block Diagram......c.ccccoevieeiiininnneniieeneeiennenens 4
2. M1710 UNIBUS Foundation Module........ceeoviviriiiiiiniiinininnnnninininnninne 6
3. PSG Block Diagram...ccoviieuriiineninininiiiiinierueiiniisesiressisnensnsnssensnensass 7
4, Address and Gating Control......ccoceeiriiiiiiiiiiiiiiiiniriniiiniiinininiieeneniee 11
5. Bus Driver and ReCEIVET ...ouviiiiiiiiiiiiiiiiiiiiiiiiiieniiiienieieeineneneanenes 12
6. PSG Control LOZIC .uveviiireniieiiiiiinirineininrneniuenersstrineesrssensaenesnenass 14
7. PSG Bi-Directional BUS....occoviiiriniieiiiniiiiiiniiiiniiiiiiinirniieesisenninees 15
8. PSG Amplifier and MIXCr.....ccvuviiiniiiiiiiiiiiiiiinii e, 16
TABLES
1. Tone Register Channel ASSIZRMENtS ...ocuvuiiriviiuiiniiiiiiinieiiiiiiirinenenienee 8
2. MIXETr COMIOL iiiiiiuiiueiiienereiiriratinseeirissierscisiseisenesiorsiosensassassss 9
3. Envelope Shape and Control Register......cvvviriiiiiiiiiiniiniiiiniiiiniennnnn 10

SOUND EFFECTS GENERATOR FOR USE WITH THE COCKPIT RESEARCH AND
EXPERIMENTATION WORK LOAD SIMULATOR (CREWS)

INTRODUCTION

A two-channel sound effects generator (SEG) has been designed and developed by the
U.S. Army Human Engineering Laboratory (USAHEL) for use with the Human Factors Research
Simulator (HFRS). Although not designed to reproduce or model any particular sound, each
channel on the SEG is capable of digitally synthesizing a wide variety of complex sounds under
software control through individual noise and tone components. The SEG provides the
mechanisms for independently creating and altering the amplitude and frequency for three separate
noise and tone components for each channel. The SEG allows the noise and tones to be blended
(mixed) and shaped, producing a single complex sound with multiple elements of noise and tones.

This manual provides a general description of the sound effects generator and of the
software developed for its use. This manual is divided into two sections. The first section
provides the information necessary in understanding the SEG hardware concepts for UNIBUS
interfacing and sound generation. The second section provides the information necessary for using
the SEG software.

To understand the software presented, the reader should be familiar with the FORTRAN-
77 programming language and the Digital Equipment Corporation (DEC) VAX/VMS Operating
System (OS). To fully comprehcad all the material in this manual, the reader should also re
familiar with digital electronic theory, electronic computer concepts, UNIBUS concepts, the
M1710 UNIBUS Foundation Module, the VA X architecture, and the MACRO-11 programming
language.

Additional information pertaining to the DEC UNIBUS and the AY-3-8912 Programmable
Sound Generator can be obtained from the DEC Computer Interfacing Accessories and Logic
Handbook, the DEC VAX Hardware Handbook, the DEC PDP11BUS Handbook, and the
General Instruments Microelectronics Data Catalog.

GENERAL DESCRIPTION

The SEG consists of two programmable sound generators, each of which can be
independently and dynamically altered under program control. Each PSG is capable of producing
three separate channels of noise and tones. Each channel contains a mixer for blending the noise
and tones as desired. Furthermore, each channel's output can be independently shaped
(tnodulated) based on one of 10 distinct wave forms (see Appendix A). These wave forms control
the amplitude, period, or frequency, creating an envelope of noise or sound and may be
dynamically altered to produce a particular sound or audible effect. In addition, the three output
channels are mixed to produce a single output of sound. In effect, three separate channels of noise
or tones can be independently mixed, shaped, and controlled to produce a single complex sound.

Built on a single, quad-height module, the SEG plugs directly into a UNIBUS small
per1phera1 controller (SPC) slot. Described here in two sections (see Figure 1), section one
consists of the programmable sound generators that perform the actual sound generation. Section
two consists of tl.e UNIBUS controller logic and the 8-bit I/O port that allows the PSGs to
communicate with the host or computer.

-ures3erp joo[q J01eIouad §109330 punog T 23ty

‘1 MOI133s -1l MOILUHES
S
T A NASS
R B /7 NASH
ﬂ NO010 ZHW v -1| 000
0YINOD
osd
LYY T [—
M081N0D | L sont
95d 1! rToeva
108 H ! d
. N
: w st1a
ANOW&V grmeeesremser J asseemsnmamnasascsamane s oasmxaniess 1] ,
i et __ls0N1I
11 :) 2090
o7 | YoLvu3N39 (" sna 1uNO1103d10-18 9Sd 6a1LN0 ¢
] aNNos ; o
82 |3qguuvasodd : ' n
ST , : : y
vz . 20va i : 3
F P
r,ﬁ,»ﬁ ﬁ J : 20100 51501
ﬂ ﬁ ﬁ ﬁ ﬂ T0UINDD
SnaIHN
* Teoq reia | 22400 LT9
130d \
(1954 o1 :
1 i18-8 .
o7 UOLYUINID '
aNnos ¥004a 8v1Q {5
87 {3 1aulvu90Uud 20110
9T 20va
\ ™
(8 1N4Ln0>
8 oz
8 dsC ¥IKIW =
orany ¥31311dUY
vz
(Y 1NdLNO) -
") ot
Y d4/70 A
¥3IKIW
orany ¥31311duy ar y,
o1

iy o2 AR INN]
OH1 19D
SN31HN

sng viwa
SN31NN

SNg S&3d4aav
SA8INN

For this application, the SEG is connected to a DEC VAX 11/750 computer using the VMS
operating system. It should be noted, however, that the sound effects generator is not limited to
use on the VAX 11/750 but may be installed on any computer system with the DEC UNIBUS
architecture.

DETAILED DESCRIPTION

The SEG developed by the HEL uses two General Instruments AY-3-8912 programmable
sound generator LSI circuits, a Digital Equipment Corporation (DEC) M1710 UNIBUS
foundation module, and some control and signal conditioning circuitry. All the components are
mounted on a DEC M1710 UNIBUS foundation module (see Figure 2) and connected to the
UNIBUS on a DEC VAX 11/750 minicomputer.

THEORY OF CPERATION

Programmable Sound Generator (PSG)!

The AY-3-8912 is a register-oriented device consisting of 13 read and write registers {see
Appendix B), each alterable under program control. The PSG can be subdivided into six basic
blocks for producing sound (see Figure 3). They include:

a. Tone generators that produce square wavc tones at user-controlled frequencies
for each channel (A,B,C).

b. Noise generator that "produces a frequency-modulated pseudo random pulse
width square wave for noise output."2

¢. Mixer that combines the tone and noise for each output channel (A,B,C).

d. Amplitude controls that allow fixed or amplitude modulated volume control fo:
each channel (A,B,C).

e. Envelope generator that selects one of 10 envelope patterns for shaping
(modulating) the output.

f. Digital-to-Analog (D/A) converters that produce the sounds for each channel
from the data loaded in the read and write registers on the PSG.

1The information about the PSG was developed from the detailed description and specifications
pertaining to the AY-3-8912 Programmable Sound Generator. General Instruments Corporation,
"Programmable Sound Generator," Microelectronics Data Catalog (1982) pp. 5.18 to 5.25.

2General Instruments, Microelectronics Data Catalog (1982) p. 5.19.

Y80A34HATHNGES LON

*a[pouI UOREPUNOY SNFINN OTLIN " 2m3Ly

SHOLIJHUD. ¥OLS1IS53d 31380814 -

2.8
3U0CLSTIS3EY 313482<1a - A

28003 IHAT

WNG¥SLNN

YaOA3IHONTIWNIAS LNAN

3310

Y83 JH M TINGYE LOn

+3

N

,_._M_H

Q
a4
1 d ~
o I
2
PP mL W
ok A% b
@ 23 $T3 6&73 ¥33 523 =gz ¢F <3 =vd
m i o£3 £€3 €3 _oooofl?v?
673 ST3 023 2
523
TT3 913 1¢3 923 m W W M m W
e T2 T pR3 b gEm <63
eors ZTOIVHLTE bZZIT HSSKEQT MUSSMED zZobs
M ¥ 2
g Y
Z73 Z73 223 Z23 S23 or3 S+3
€73 73 €23 €23 53 T+3 Zr3
FZZH7 SZThe £2Tbe USSHEGT HSEXEOT

*

o O

"WreISeIp y00[q DSJ ¢ AN

¥300033 [
qas a3y HOLYN
; F “daay co3y L.
o
JOLYEINID Mw“mw r
340713NN3 .ﬂﬁm, .
NWUHO 909NV o3f13}zalz3
NUHD S07UNY 133 234
NUHO 90 UNY | {
SYI1MNINNOD = T0ULNOD A e
9.,Q g 30N1L 170y (59> 7
2
of 8] v
q3s 934
PR (
SyIRIM
T
= ¥yoiwysnzs [(S¥IPEY b
M (gu4zay | |
8 (Ty<eay Ll
-4
HYOLYH3N3O el
3310M (Sdy .
T
I |
{

™~ 35 93y

-§ eova

Javd

[cTalt u]

Ny
TIWMOILI3HIA-13 wsd

Tone Control }

There are six tone generator control registers, Register 0 (R0) through Register 5
(R5), that control the frequencies for the three output channels (A, B, and C) that produce tones.
Each channel has two registers associated with it. The frequency for each channel is determined
by the 8-bit count (0 to 255) loaded in the first register called the fine tune register and the 4-bit
count (0 to 15) loaded in the second register called coarse tune register. Combined, the registers
produce a 12-bit value used to divide the basic clock frequency of 87.5 KHz by the value
contained in the corresponding registers for each channel (see Table 1). The 8-bit fine tune register
contains the Least Significant Bits (LSB) and is used for making fine frequency adjustments of the
tone. The four-bit coarse tune register contains the Most Significant Bits (MSB) and is used for
making coarse frequency adjustments of the tone.

Table 1

Tone Register Channel Assignments

Coarse Tune Fine Tune
Channel Register Register
A R1 RO
B R3 R2
C RS R4

Noise Generator Control

A single noise generator control register, Register 6 (R6), controls the frequency of
the noise source. The noise frequency component is determined by the 5-bit value (range O to 31)
loaded in R6 and is derived by dividing the basic noise clock frequency (87.5 KHz) by the value
loaded in R6. Since there is only one noise generator control register, the noise frequency
component on each channel will be the same for all three channels, but the amplitude of each may
be individually controlled (see Amplitude Control section).

Mixer Control

A single mixer control register, Register 7 (R7), controls the tone and noise mixing
for each of the three analog output channels on each PSG. The mixer can combine either, neither,
or both tone and noise for each channel, The mixing is determined by the 6-bit value (range 0 to
63) loaded in R7. Bit 0 (B0), bit 1 (B1), and bit 2 (B2) designate which channels are enabled or
disabled (channels A, B, and C) for tone, whereas, bit 3 (B3), bit 4 (B4}, and bit 5 (BS) designate
which channels are enabled or disabled for noise (see Table 2). To enable a channel requires that
the appropriate bit(s) be reset or off.

Table 2

Mixer Control

Function = NOISE ENABLE TONE EMNABLE

BitNumber B5 B4 B3 B2 Bl B0
Channel CBA CBA

Amplitude Control

Three 5-bit amplitude control registers, Register 8 (R8), Register 9 (R9), and
Register 10 (R10), control the amplitude level and select the mode for each output channel (A, B,
and C). Bit 4 in each amplitude control register designates whether the amplitude will be fixed (bit
4 = 0) or if the amplitude will be modulated (bit 4 = 1). When the mode is "fixed," bits 0 through
3 provide 16 (0 to 15) discrete volume levels with O being lowest level (off) and 15 being the
highest. In "modulated” mode, the volume is controlled according to the shape and frequency
produced by the envelope generator (see Envelope Generator Control section).

Envelope Generator Control

The envelope generator control section makes it possible to vary the envelope period
or frequency as well as select or change the envelope shape when modulating the output channels
(see Amplitude Control section).

Enveloupe Period Control

Two 8-bit envelope period control registers, Register 14 (R14) and register
15 (R15), control the period or frequency of the selected envelope pattern. R14, the envelope fine
tune register, represents the LSB and provides the envelope period fine tuning adjustments. The
envelope coarse tune register, R15, represents the MSB and provides the envelope period coarse
tuning adjustments, Internally combined, the resulting 16-bit value is used to divide the
fundamental noise clock frequency (5.47 KHz) and derive the envelope period or frequency.

Envelope Shape and Cycle Control

A single 4-bit envelope shape and cycle control register, Register 16 (R16),
determines the envelope shape and cycle. Bits O through 3 are used to produce any one of 10
envelope shapes (see Appendix A). Each bit has a specific control function in the envelope
generator (see Table 3) which causes one of the envelope shapes to be produced.

Table 3

Envelope Shape and Control Register

Bit Function

0 HOLD

1 ALTERNATE
2 ATTACK

3 CONTINUE

Digital-to-Analog (D/A) Converters

The final step in generating sounds is transforming the digital data, as represented
by the PSG registers, into the actual analog sound. This occurs in the D/A converter, where each
PSG is capable of generating as many as three separate channels of sounds. Each channel is

independently controlled and imay contain a noise component or tone component as determined by
the register data.

M1710 UNIBUS Foundation Module

The UNIBUS foundation module provides a general purpose, single-board interfacing
module that supplies the basic interfacing circuitry when configuring custom devices to computers
using the DEC UNIBUS architecture. The module provides the electronic circuitry for device
address selection, interrupt generation, and data bus receiving and driving. Furthermore, the
module can accommodate numerous 14-pin and 16-pin dual-in-line-packages (DIP) as well as
seme DIP to as many as 40 pins, providing the basic building block for custom interfaces.

Address Selection

The SEG responds to UNIBUS addresses 167724 through 167737 (octal). The
execution of a data transfer instruction causes the appropriate address bits (AQO through A17) and
the control bits (CO and CO1) to be placed on the UNIBUS (see timing diagram in Appendix C).
Each device on the UNIBUS receives the address and control bits and begins the device address
decoding. After a short interval dclay for deskew, MSYN L is asserted by the master device or in
this case the central processing unit (CPU). Each device on the UNIBUS receives MSYN L,
completes its device address decoding, whereupon the device with the proper address responds by
asserting DEVICE ENABLE L.

PSG Selection and Commands

DEVICE ENABLE L allows further decoding of address bits AQ1 through A04 by
the 4- to 16-line decoder (see Figure 4). This causes the appropriate PSG to be selected and the

proper PSG command to be initiated (see timing diagram in Appendix C): LATCH PSG, KEAD
PSG, or WRITE PSG.

LATCH PSG selects one of the 13 registers associated with each PSG. SEL 30
(LATCH PSG1) selects the register specified by the data lines BUS D00 through BUS D15 (see
Figure 5) for PSG1 by initiating the proper control signals BC2, BC1, BDIR, and SEL PSG1 (see
Figure 4). SEL 36 (LATCH P5G2) initiates the same action for PSG2 (see Figure 4).

10

-

T 40 T 133HS| 88-T-€ 31v0
n3a| 713S3aQY 13KUN3II 3
NOSJWOHL *M'W 148 NMY3Q

933 1A8 Q3NS1530
ONILUD/SS3HAAY 13711

‘[onuod Sunes pue SSAIPPY °p 2SN

(11YQ)> 71 NI 6£e &9

(01uYQd) 1 MO LNO ope F———9
7 HOIH LNO 8Ee

A1NOD
3199

)

P Z£D 1 000 Sas
o232 71 102 snsg
P——2HD "1 00V Sn8

18s - QQuv
AYO1UB0AYT ONIAUIINIONI NUWNH

|
<>
T LINI 8Se ~J

H LINI 6Se
(92291 ~ »2Z229T) JI19071
NOIL1lJ33N3s

$$33aay

(T9Sd HOL1VYT) 9€ N3S T9e
(Z9Sd 3LI¥M) ¥E€E N3S 29
(29Sd QU3aY) Z€ N3S E€9e
(19Sd HOLYT) € T3S +9e
(T9Sd 3L1YM) 92T T13S SSe
(T9Sd GU3y) #Z 13S 99e

1 378UN3 30IN30 LEe

LIGIHN] NASS 09#9Q 4n|100°

< NASS $N8 o :,.o.A

e

L, THO
R T
TN R
i L, zno
P
IL.MNO
g8e
»Z
Ze
WH. > nA — _ e
hNNO AQVADO
Lo
< ST® (o
.
2 aad Q _ T 240
8Te
{ vom‘m [o0
= STe
e T 10
S€q, 378uN3 Tm.d—vlﬂwloAL b 1a>
8300030 | o -3 H
zelie—< _L b— 1710
T1e 33
| e) 190
OTe
X7y A0
Ty 10
oy, 209
b’ 230
b— TQd

sna

T8 7 1INI sSnN8

T 10ovY SNy
1 2Zov sNg
71 €0V sSn8

1 vov sng

1 sev sna

1 90v sSN8

T 20V SNa

1 sov sng

7 eovY sSNg

7 oTY sna

7 1Iv sng

4

ZiY sSng

ETY sn8g
riv sSna
STY sn8
9Ty SN
&TY sN8

JS JS R [

Oo— T30 NASW sSN8
(A>) SY3NI303Y

11

40 133HS {88,672 31UG

n3¥ | ¥nQuO¥ :3WUNIIA

NOSJWOHL M-l A8 NMUAQA

03Q :Ag8 G3N91s3a

J3RT13033-,83n1d40 snad 37011

1ss - 4auy
AJOLYHOEYTT ONIJIINTONI NUUNH

FAL
/}BY
ny
FAR
ZNY
Zdv
ny
kY

T

<HY
249
23y

ZGY

P S O et | J 4 J g 4

S04 2 d

eog
Ted
204
£ea
+oaq
s$ea
Sed
oed
800G
604
9140
10
210
€70
¥TQ

STQ

"IOAT12291 PUR ISALIP Sng °C 9mSLg

S6% H 00 1NO &
sna

96% H 1O L1NO &<
sNg

6% H TO Ino &
sng

86# H €0 1no &9
sNa

66¢ H vO LNO
sN8

20T# H S© 1no @9
sna

T0T# H 98 LNO &
sN8
20T+ H Lo 1N0 &
sng

£0T+ H 80 LNO &
sng

pOT# H 60 LNO &
sn8g

ST+ H 01 LNo &
sna

98T H TT 1NO &
sN8|

20T# H €1 1n0o &9
sng

80T+ H £1 1NO =
sn8

€oTe 1 +T 10O &
sng
@17 H ST 1no
sNs

SdMAa
naN3a

dnda

AN
sng

Ble

1 ¥ D SNHId "TW ano
ZUD42TYR T NG+

A3AM0 S

ﬂ/LMHHHHMWIIIiltJ I8¥N3 ¥3n1d40

Liw

baidddadiiddaddss

Sis H @ONI
o8% H TOMI
T8% H TONI
Z8+ H £ONI
£&% H PONI
+Se H SeMI
Sés H SONI
984 H LONI
8% H SONI -
S8« H €ONI
68% H OTHNI
@6 H_TTINI
Tés H TINI
Zé# H E€TNI
£6% H bINI
6% H STNI

12

READ PSG allows the user to examine the contents of a PSG register previously
selected by the LATCH PSG command. SEL 24 (READ PSG1) performs a register read of the
register previously selected by initiating the proper control signals BC2, BC1, BDIR, and SEL
PSG1 (see Figure 4) for PSG1. SEL 24 (READ PSG2) initiates the same action for PSG2.

WRITE PSG allows the user to deposit a value into a PSG register previously
selected by the LATCH PSG command. SEL 26 (WRITE PSG1) deposits a value into the register
previously selected by initiating the proper control signals BC2, BC1, BDIR, and SEL PSG1 (see
Figure 4) for PSG2. SEL 34 (WRITE PSG2) initiates the same action for PSG2.

Gating Control

UNIBUS control lines CO0 and CO1 (see Figure 4) designate the type of data
transaction, data-in (DATI) or data-out (DATO), with respect to the master device.

DATI transactions (C00 = 0 and C01 = 1) cause data transfers from the PSG
register selected to the address specified by the processor. A DATI transaction occurs when a
READ PSG command is executed by the CPU. -

DATO transactions (CO0 = 1 and CO1 = 0) cause data transfers from an address
specified by the processor to the PSG register selected. A DATO transaction occurs when a
LATCH PSG or WRITE PSG command is executed by the CPU.

Data Bus Interface

The data bus interface contains the UNIBUS drivers, receivers, and 8-bit I/O PORT
for establishing the two-way data path between the PSGs and the CPU. Data are transferred from
the PSG to the CPU (READ PSG) by way of the PSG Bi-directional Bus (see Figure 1). Data for
ihe CPU are placed on input lines INOO through INO7 (see Figure 5), whereupon assertion of
DRIVER ENBL L (see Figure 6) signal causes the data to be placed on the UNIBUS data lines for
transfer to the CPU.

Data are transferred from the CPU to the PSG by way of UNIBUS data lines D15
through D00 and output lines OUT 15 through OUT 00 (see Figure 5). Data placed on data lines
D15 through DOO are passed to the output line OUT 15 through OUT 00. These in turn are passed
to the input lines of the 8-bit I/O PORT (see Figure 7) which places the data on the PSG
Bi-directional Bus. The data are then available for processing by the selected PSG for either
register selection (LATCH PSG) or data transfer to the selected register (WRITE PSG).

Amplifier and Mixer

The amplifier and mixer section of the SEG contains the signal conditioning,
driving, and final mixing (adder) circuits for the SEG (see Figure 8). Each PSG output channel is
connected to a signal driver whose output feeds an adder which combines the three output channels
of each PSG. The output of the adder then feeds the signal conditioning circuit consisting of a
voltage divider and AC coupling capacitor for final output.

13

*2150] [0QU0d NS ‘9 M3y

1 —_ m%l
d_ AH3OO Rk)
0
vl 14 VP
— .a 9
zZ1 m e T ° 8z
MO0TID ZHW b T s Sl et 32 -3
33 - mmqm.._wm w TM_
€215 o o A S le
613 _I_ st Adis
ddig N
A8 "3 ’ NS+
NS+
71 9€ 113S (THSE HILWTD
- woﬂ = " #€ 13S (TOSd 3i1id
€o5d 13 6T1SIEITE 1 z&£ 135 (29Sd aU3d)
sb3
1T ET “71 @€ 133 (195d HOLWL)
1964 3s NALA. Z 9 9T 3S (T9Sd Jilang’
QISIFal 1 T 2 138 (TASd av3xwy
st3
1 MO LN
41a8

1 3TI8UNT ¥3aANIya

€

cosTrL |
z13

108

z08 IIIJ

NS+

2ZStL
6€3

T Nl

1 373uM3 3010340

T13as
a3s
a3s
13s

{298d HO1W ™D
(Z295d av3xn)
(1954 HOUY™D
(T95d Qu3d)

14

'Snq [EUOROAMP-Iq DS °L FMSHY

- ZONT =
S0N1
SoN1
¥ON1
EONI
ZoN1
TONI
sng @0oN1 s
YNOI1L0381a-19 i 1 ,
954 o3 1353y
ZT68EAY MO0 |57
4109 g
Nommﬂql oYo1 zod9 &1
=1 1903 108[©
Nﬂ.mmww ova |3
TT] TYa =
e ¥%%! zua V
=S¥l coafs
B vo1 +ua [F
=z sva e wn
32 90 19NY Tld70 O 9SUYQ < ko
aZ S0 1UNY P 1470 8 YA T
92 50-9NY 5] d-0 U 89 [ZT - < asd 13s
T IOZHWP * ¥
N+
‘ 708
w ; Ld0d O-1 LiSS
T-LINI
1383y au
ZT65EAY 300710 [5T <3 180 |bL
o = -
1 9sd d1a8 787 zrza zsa |1
1 evol zoa e ais [E7 +NASS
= Tvo! 108 [T TT dg108
2901
ZT] cuot ovQ |82 | 100 Tia J¥§ HBOLMO
jlvcom I9a [&< 9§ | 204 21a g HiolNo
LA PO 2YqQ 5T 8 | €00 €10 |7 HZO1NO
57 SUOT £Ya 52 21| ¥oQ +13 g HEBGLND
ldI\CON bYQ T <7 | 5040 sIa 1357 HFERLNO
—=1° SUa [T 21| 204 £10 187 HS91N0
57 90 19NG |d-0 O 959a[2<e €7 <030 <10 15z HSOLINO
81 90 1UNY 4 m\w w nmmv_a T<| 5040 810 [zT ZALIN0
U7 SOTIYNY BN ZT] =

T 98d 13s

-JoxTW pue 1ogTdure DG4 ‘g A1

bZZW \ M zzy
zz3
AAAY + 5T W)N\M 02 90TIUNY
0T 8 e
. 6Zy N .
1 pany]) - T |
. ozy T2y -
AZ-2Z ZZuN 8Ty |
4n 1- E£d Zz23 <L A
(33 - 10 > NS YT — / < vy 8z 90TUMY
g 4-0 orany 0 Zey pi-a) M.. S N 7
. AAA AAF we > =5 i |
. STy 2Ty STy f
+Z2Zu7
zza 1] A
A— \ € P4 WZ 90BN
- eT 1 iz
2zy =
AN A
€T Ty ErTYTRN
¥=1
—t
FTZW W 1Ty
€13 x MV e .
AV ST M DT 90TUNY
0T 8 NZIIe
- S22y =
T ANNV— A T -
63 2Ty R
R $ZZTU 4
4n 1+ TEN €713 o’ AA—1
00y - 10 > M ST S o aT 907Ny
¥ d/C oI0NnY 12 o8y e 5 N
VWV o) - 11
prgl o o g
<
m.—.mx M ’
AAA— 5 M Ul 907 WNY
eT TNE
(& 2% =
Pg A

Ty zd 9y - T

SOUND EFFECTS GENERATOR USER'S GUIDE

Software has been developed for use with the sound effects generator (SEG). The
software provides easy access to the SEG with inclusion of FORTRAN callable MACRO
subroutines (see Appendix D). The Macro source listings for each subroutine are provided in
Appendix E and a working FORTRAN example program in Appendix F. Using the subroutines
requires adhering to the proper calling format in your application program. Then you must link
those subroutines with your application program. The SEG object files required for linking are on
the VAX 11/750 in the directory DRAO:[SEG.OBJ].

Two important concepts should be noted pertaining to the SEG. First, the sounds
produced by the programmable sound generators (PSG) on the SEG are initiated and changed by
simply performing a series of register loads. Therefore, each functional area used in producing
sounds (tone, noise, mixing, amplitude, and envelope generation) can be related to a specific
register within each PSG.

Second, once a sound has been generated by the PSG in the modulated mode, that sound is
sustained without further intervention by the controlling process. Since the PSG is a register-
oriented device, it only responds to changes made in its internal registers. This feature reduces the
overhead required by any process when interacting with the SEG since generating or changing a
particular sound requires setting only a few data registers while repetitive sounds require no
intervention.

All the subroutines used to access the SEG require mapping to a global page frame section.
This section should have been created before running any software using the PSG software. The
procedure for installing the page frame section is described in the following "Create and Map"
section, One final note: all numeric values should be declared as integers.
Create and Map Section

For the subroutines to work, a page frame section must be created for the SEG so that
users are able to map to the section created for the PSG. In essence, the process creates a group
global section called PSGSEC, which allows processes to associate (map) a section of its address
space with the specific physical device addresses of the SEG. The page frame section can be
installed by running the program:

$RUN PSGMAP
The process requires the following privileges:

PFENMAP to create a page frame section.

PRMGBL to create a permanent global section.

Regisier Reset

A subroutine has been developed for FORTRAN inclusion that will reset or clear all the
registers (0 through 13) for either programmable sound generator (PSG) or both on the SEG. The
calling format is:

CALL PSG_RESET (PSG_NUM)

17

In which the PSG_NUM argument has the following meaning:

PSG_NUM = 0 reset both PSG1 and PSG2.
PSG_NUM =1 reset PSG1.
PSG_NUM = 2 reset PSG2.

Tone Selection

Each PSG on the SEG has three separate channels that may be programmed with a different
tone. Associated with each channel are two registers for determining the tone frequency. The first
register represents the LSB, bits 0 through 7, and is used for fine tuning the tone frequency. The
second register represents the MSB, bits 8 through 11, and is used for coarse tuning the tone
frequency. Combined, they produce a 12-bit number, which is used to divide the fundamental tone
clock frequency (87.5 KHz) down to the tonal frequency required.
The subroutine developed for FORTRAN inclusion has the following format:

CALL PSG_TONE (PSG_NUM, CHAN_NUM, COARSE_AD]J, FINE_ADJ)
The arguments have the following significance:

PSG_NUM specifies which PSG will be modified, 1 or 2.

CHAN_NUM specifies which channel (1, 2, or 3) for setting the tonal frequency.

COARSE_ADJ is the value of bits 8 through 11 for the coarse frequency
adjustments. The range is 0 to 15.

FINE_ADJ is the value of bits O through 7 for the fine frequency adjustments.
The range is O to 255.

Noise Selection

Each PSG on the SEG has three channels that may be programmed with noise. The
frequency content of the noise for all channels is determined by this one register, the noise
generator control register. Again, as with the tone generation, the frequency content is determined
by dividing the fundamental clock frequency (87.5 KHz) by the value of the 5-bit noise generation
control register. '
The subroutine developed for FORTRAN inclusion has the following format:

CALL PSG_NOISE (PSG_NUM, NOISE_FREQ)
The arguments have the following significance:

PSG_NUM specifies which PSG will be modified and has a value of 1 or 2.

NOISE_FREQ is the value representing bits O through 4 used for calculating the
noise frequency content and has a value ranging from 0 to 31.

18

Mixer Selection

Each PSG on the SEG has a mixer that will blend the tone and noise for each channel on
the PSG. Blending or mixing is controlled by the mixer control register, an 8-bit register, of
which the lower 6 bits are used for mixing the tone and noise. This is accomplished by
constructing a bit mask in the mixer control register, in which bit 0 through bit 2 form the tone
mixer mask, and bit 3 through bit 5 form the noise mixer mask for channels 1, 2, and 3. Mixing is
disabled when the respective bit for tone or noise is set or enabled when the respective bit for tone
or noise is reset. For example, if bit 0 is set, there is no tone on channel 1, or if bit 3 is set, there
is no noise on channel 1. The same convention is followed for channels 2 and 3.

The subroutine developed for FORTRAN inclusion has the following format:
CALL PSG_MIXER (PSG_NUM, MIXER_MASK)
The arguments have the following significance:
PSG_NUM specifies which PSG will be modified and has a value of 1 or 2.

MIXER_MASK is the value representing the mixer mask, bits 0 through 5, enabling
or disabling tone and noise mixing for each channel. The value
range is 0 through 63.

Amplitude Control

Each PSG on the SEG has three channels that may be programmed independently for
amplitude (volume). The amplitude of each channel is determined by the 5-bit value in their
respective amplitude control register. Each amplitude control register has two modes of operation
associated with it: a fixed mode and a modulated mode. The mode is determined by bit 5, the
"mode" select bit. In the fixed mode, bit 5 ("mode" select) is reset, and bit 0 through bit 4
determine one of 16 discrete steps for volume control where 0 is off and 15 is maximum. In the
modulated mode, bit 5 ("mode" select) is set, and bit O through bit 5 are ignored. The volume is
then modulated as determined by the envelope generator described in the next section "Envelope
Generator Control."

The subroutine developed for FORTRAN inclusion has the following format:
CALL PSG_AMP (PSG_NUM, CHAN_NUM, AMPLITUDE)

The arguments have the following significance:

PSG_NUM specifies which PSG will be modified, and has the value of 1 or 2.

CHAN_NUM specifies the channel (1, 2, or 3) for volume setting or modulation
selection,

AMPLITUDE is the value representing bits O through bit 5 for setting the volume
level. The value is 16 for modulation or ranges between 0 and 15 for
fixed volumes.

19

Envelope Generator Coatrol

When in modulated mode (see "Amplitude Control" section), “mode" select bit is set, and
each PSG output on the SEG can be controlled by the envelope generator. The envelope generator
allows the selection of a particular wave form pattern (see Appendix A) and allows for setting the
period of the wave form. The pattern is used to create the envelope shape for the desired output.

Envelope Period Control

The envelope period control determines the frequency or period of the envelope
pattern, Associated with the envelope period are two registers for determining the envelope period.
The first register represents the LSB, bit 0 through bit 7, and is called the envelope fine tune
register. The second register represents the MSB, bits 8 through bit 15, and is called the envelope
coarse tune register. Combined, they produce a 16-bit value, which is used tc divide the envelope
clock frequency of 5.47 KHz down to the envelope period desired.

The subroutine developed for FORTRAN inclusion has the following format:
CALL PSG_ENV_GEN (PSG_NUM, COARSE_VAL, FINE_VAL)
The arguments have the following significance:
PSG_NUM specifies which PSG will be modified and has a value of 1 or 2.

COARSE_VAL is the value representing bit 8 through bit 15 in the envelope coarse
tune adjustment register. The value range is from 0 to 255.

FINE_VAL is the value representing bit O through bit 7 in the envelope fine tune
adjustment register. The value range is from 0 to 255.
Envelope Shape and Cycle Control
The envelope shape and cycle control determines the envelope shape and defines the

envelope as a single or repetitive (cycling) event. A 4-bit register, called the envelope shape and
cycle control register, selects one of 10 different wave forms (see Appendix A). The wave form
selected is used to create the output shape (envelope), which becomes a single burst or repetitive
bursts of noise or tones.
The subroutine developed for FORTRAN inclusion has the following format:

CALL PSG_ENV_SHAPE (PSG_NUM, SHAPE_VAL)

The arguments have the following significance:

PSG_NUM specifies which PSG will be modified and has a value of 1 or 2.

SHAPE_VAL is the value representing bit 0 through bit 3 for the envelope shape
and cycle control register. The value range is from 0 to 15 (see
Appendix A for patterns).

20

Reading PSG Registers

It is possible to examine the contents of any PSG register. A subroutine has been
developed for FORTRAN inclusion that will read the contents of the specified register. The calling
format is

CALL PSG_READ (PSG_NUM, REG_NUM, REG_VAL)
In which the arguments have the following significance:

PSG_NUM specifies which PSG will be modified and has a value of 1 or 2.

REG_NUM is the number of the register to be read (0 to 13). The range is from
0 to 13 (see Appendix B for the number of the register functions).

REG_VAL is the value of the specified register.

21

REFERENCES
Digital Equipment Corporation. (1978). Computer interfacin s~ s and logic handbook.
Maynard, MA: Digital Equipment Corporation.

Digital Equipment Corporation. (1979). PDP11bus handbook. Maynard, MA: Digital Equipment
Corporation.

Digital Equipment Corporation. (1982). VAX hardware handbook. Maynard, MA: Digital
Equipment Corporation.

General Instrument Corporation. (1982). Microelectronics data catalog. Hicksville, NY: General
Instrument Corporation.

23

APPENDIX A
ENVELOPE SHAPE AND CYCLE PATTERNS

25

ENVELOPE SHAPE AND CYCLE PATTERNS3

R13 bits
BO|B1|B2]B3

010 {Ix |x

/]

epl ep is the envelope period

—

General Instruments Corporation. Arogrammable Sound Generator,”
Microelectronics Data Catalog (Hi© ville, N.Y. 1982) p. 5.22.

27

APPENDIX B
PROGRAMMABLE SOUND GENERATOR REGISTER FUNCTIONS

29

PROGRAMABLE SOUND GENERATOR REGISTER FUNCTIONS

Register

Function

Channel A Tone Period (fine)
Channel A Tone Period (coarse)
Channel B Tone Period (fine)
Channel B Tone Period (coarse)
Channel C Tone Period (fine)
Channel C Tone Period (coarse)
Noise Period

Mixer

Channel A Amplitude Control
Channel B Amplitude Control
Channel C Amplitude Control
Envelope Period (fine)
Envelope Period (coarse)
Envelope Shape and Cycle Control

31

APPENDIX C
PSG TIMING DIAGRAM

33

PSG TIMING DIAGRAM

" LATCH ADDRESS | '

N ‘606 NS’

."- . « . > .

DEUICE ENABLE

oata. . X 700 NS

X

BC2 . (+5U).

ger. . /. . 60@ NS

.BDIR. . /.

SEL PSG. (n8). /.

. SSYN. . 400 NS . . _

’ e e e e
289 NS’ '/Ti'f

WRITE PSG '

DEUICE ENPBLE® N\ - 608 NS . .

ST

paTa: *© X -+ 700 NS

X

BC2 "7 +35U)

BC1 (QU)

BDIR /< T .éed NS

A=

SEl. PSG (AZ) /

E Ve
. .

SSYM® - - hoo 1S - - A\L___28@ NS . . [T

READ PSG | | |

DEVICE . EIABLE A\ 500 N5

ST

‘pata X 500 NS

X

BC2 (+5U)

ger / 500 13

AOIR (OUY

\ . . «
| S
M A - oa

SEL. PSG (A8) . P

SSYN EEI Y

35

N

359 NS A

APPENDIX D
SOUND EFFECTS GENERATOR PROGRAMS AND SUBROUTINES

37

SOUND EFFECTS GENERATOR PROGRAMS AND SUBROUTINES

FORTRAN PROGRAMS

PSGMAP - creates the global page frame section for the Sound Effects Generator.

FORTRAN SUBROUTINES
Subroutine

PSG_RESET
PSG_TONE
PSG_NOISE
PSG_MIXER
PSG_AMP
PSG_ENV_GEN
PSG_ENV_SHAPE
PSG_READ

Arguments

(psg_num)

(psg. num, chan_num, coarse_adj, fine_adj)
(psg_num, noise_freq)

(psg_num, mixer_mask)

(psg_num, chan_num, amplitude)
(psg_num, coarse_val, fine_val)

(psg_num, shape)

(psg_num, reg_num, reg_value)

39

APPENDIX E

MACRC SOURCE CODE FOR FORTRAN CALLABLE SUBROUTINES

41

DRAL[THOMPSON.PSG|PSGMAP.MAR;64

;***m***************
: This is a FORTRAN callable macro subroutine that returns the

; Creates the map section PAGE FRAME MAP (PFN).
; Programmable Sound Generator (PSG) UNIBUS address:

; regiseer offset address

. READPSGI Q0 AO767724 AXIFTEA3
! WRITE PSGI A2 AO767726

! LATCH PSGI AO1 AO767730

. READ PSGI AO6 AO767732

' WRITE PSGI 010 AO767734

! LATCH PSGI AO12 AO767736

;***
: SCRMPSC -- Create and Map Section:

;***
; see 'SYSTEM SERVICES, 1/0' in the memory management services section.
FORMAT (MACRO): $CRMPSC [inadr],[retadr],[acmode],[flags],
[gsdnam},[ident],[relpag],[chan],
[pagent],[vbn],[prot],[pfc]

o ok o sge sk ok ok ok sk ok e sk sk ok sk o e sk s ke ek ok ok sk sk ok ok 3k sk e sfe s sk ke s e sk e sk sk ke S ok e e sfe s i sk ke sje ke ok e s i st oie st ok stk sk sk R sk soRoOR Rk
Arguments required for creating the page frame section:

; inadr - Starting and ending virtual addresses into which the
; section is to be mapped. If the starting and ending
; addresses are the same, a single page is mapped.

: retadr- Starting and ending virtual addresses into which the section
; was actually mapped.

; flags - Flag mask specifying the type of section to be mapped or
; created. #SECSM_WRTISECSM_PFNMAP)

; pagent- Number of pages in the section. Cannot equal zero for physical
; page frame.

; vbn - Specifies the page frame number where the section begins in
; memory. {((base addr. + unibus offset) / bytes per page) where

; base addr. = unibus base addr. UB0 = AX 20100000
: unibus offset = force stick begins at 2O 767724
; bytes per page = 512

e A Bk Ak o ok o ok A o k- O
USE BYTE ADDRESSING MODE:

; UBA_BASE =@RETRANGE =X 2013EFD4

; READ PSGI1 = @RETRANGE =4X 2013EFD4

; WRITE PSG1 = @RETRANGE+2 = /X 2013EFD6
; LATCH PSG1 = @RETRANGE+4 = AX 2013EFDS8

43

; READ PSG2 = @RETRANGE+6 =X 2013EFDA
; WRITE PSG2 = @RETRANGE+8 = AX 2013EFDC
; LATCH PSG2 = @RETRANGE+10=AX 2013EFDD

; The following assign should also work for VBN if a litetal (#) is
implied:
; VBNI1 = <AX20100000 + A0767724> @-9

; Create and map page frame section.
;************************’k**

TITLE PSG_MAP
PSECT MAP_SECTION ,NOEXE,WRT,RD,PIC

MAPRANGE:

.LONG 1024

.LONG 1024
RETRANGE:

.BLKL 2 ; reserve two longwords
REMAINDER:

.LONG 468
LATCH_REG:

.LONG 0
REG_VAL:

.LONG 0

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$IO750DEF

PSECT CODE ,EXE,NOWRT
ENTRY PSGMAP "M<>
VBNI1 = <I07505AL_UBOSP+*0767724>@-9

$CRMPSC_S -
INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M_WRT!SEC$M_PFNMAP!SECSM_EXFPREG,-
PAGCNT = #1,-
VBN = #<I07503AL_UBOSP+"0767724>@-9

CLRL RS
CLRL R6

START:
ADDL3 REMAINDER,RETRANGE,R3; get first address

Foul:
MOVAB 4[R3],R4 ; latch ADDR
MOVAB 2[R3],R5 ; write ADDR
MOVL #11,R2

LATCH:
MOVB R2,(R4) ; select register
MOVB R2,LATCH_REG

) BRW LATCH

WRITE:
MOVB R2,(R5) ; setselected reg.

; ADDB2 #1,R2

: BRW WRITE

READ:)
MOVB (R3),REG_VAL ; Get data from latched regisier
SUBB3 #15,R2,R1

; BRW READ

BLEQ LATCH
; BRW PSGI

DONE:
$EXIT_S
.END PSGMAP

DRA1:{THOMPSON.PSG]PSG_AMP.MAR;7

« 46 3 3 3k s e ke ke sk o o e e ke sk sk s s o e sk ok e e e sk s s e sk s o e ke s ofe e o sk sk o e Sk ok ok o e Sk ok ok s ke e sk ok sk sk ik ok Sk ok e ole sk o o skeoke ok ok
b

; AUTHOR: MICHAEL W. THOMPSON
; DATE :17 JUNE 1987

;***

; DESCRIPTION: Programmable Sound Generator (PSG) amplitude control.
; registers 10,11,12 for channels A,B,C, respectively.

; This is a FORTRAN callable macro subroutine that:
; Calling format: CALL PSG_AMP (PSG_NUM,CHAN_NUM,AMPLITUDE)
Selects the PSG1 or PSG2 : PSG_NUM (1or2)

. Selects the channel : CHAN_NUM (1,2,3)
; Set the amplitude for channel

; selected. : AMPLITUDE

; PSG UNIBUS address:

; register offset address

! READPSGI AQ0 AOT67724 AXIFTEA3
; WRITE PSG1 AO2 rOT67726

; LATCH PSG1 AO4 A0767730

; READ PSG1 AO6 AOT767732

; WRITE PSG1 A010 rO767734

; LATCH PSG1 AO12 rOT767736

45

;***

TITLE P_S_G_AMP

;***

.LIBRARY /SYS$LIBRARY:LIB.MLB/

$I0750DEF
PSECT MAP_SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:
.LONG 1024
.LONG 1024
RETRANGE:
BLKL 2 ; reserve two longwords
PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:
.LONG 468
PSG_NUM:
.LONG 1
CHAN_NUM:
.LONG 0
AMPLITUDE:
.LONG 3
NAME:

ASCID /PSGSEC/

.PSECT CODE,EXE,NOWRT
.ENTRY PSG_AMP, "M<R3,R4,R5,IV>

;MAP to permanent global page frame section (/O page)
SMGBLSC_S -
INADR =MAPRANGE,-
RETADR = RETRANGE,- ‘
FLAGS =#SECSM_WRTI!SECSM_EXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ; put PSG1 base address in R3
MOVL @4(AP),PSG_NUM ; get PSG number
MOVL @8(AP),CHAN_NUM ; get CHANNEL number
MOVL @12(AP),AMPLITUDE ; get CHANNEL number
CMPB #2,PSG_NUM ; sel PSG1 or PSG2
BEQL PSG2
PSG1:

MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2[R3],RS ; put write ADDR in RS
BRW CALC_CHAN

PSG2:

MOVAB 10[R3],R4 ; putlatch ADDR in R4
MOVAB 8[R3],R5 ; put writt ADDR in RS

46

CALC_CHAN:
CMPB #1,CHAN_NUM
BEQL CHAN_A
CMPB #2,CHAN_NUM
BEQL CHAN_B

CHAN_C:
MOVB #1012,CHAN_NUM
BRW SET_AMP

CHAN_B:
MOVB #1011,CHAN_NUM
BRW SET_AMP
CHAN_A:
MOVB #/010,CHAN_NUM
SET_AMP:
MOVB CHAN_NUM,(R4) ; latch AMPLITUDE rcgnstcr
MOVB AMPLITUDE,(RS) ; set amplitude register
DONE:
RET
.END
; $EXIT_S
: .END PSG_AMP

DRAI1:[THOMPSON.PSG]PSG_ENV_GEN.MAR;8

;*************’k***********************##tlw##t*“#“*‘###t*#‘*#**#*t**&*

; AUTHOR: MICHAEL W. THOMPSON

; DATE : 17 JUNE 1987
L T L A D e T

D}:.SCRIPTION Programmable Sound Generator (PSG) envelope generator
; control register 13 (fine tune) & register 14 (coarse tune).

; This is a FORTRAN callable macro subroutine that:

; Calling format:
; CALL PSG_ENV_GEN (PSG_NUM,COURSE_VALFINE_VAL)

; Selects the PSG1 or PSG2 : PSG_NUM (lor2)

: Sets the course adjust tune value: COURSE (AMO 0 THRU 20 377)
; Sets the fine adjust tune value : FINE (A0 0 thru A0 377)

; PSG UNIBUS address:

; register offset address

. READPSGI AQ0 AD767724 AXIFTEA3

; WRITE PSG1 rO2 rO767726

; LATCH PSG1 rO4 r0767730

: READ PSG1 A6 AO767732

; WRITE PSG1 AO10 70767734

; LATCH PSG1 7012 Ar0767736

47

-

o ok e b e e e e ke fe e ke she o e ke o sk ok o e ok ok 3k 3k sk o o o e ke e e b e e e e 3 e o e ok s 3k o ok 3 o a3 d o e Sk e S e e e e e e e e e de e e e e e
’

TITLE P_S_G_ENV_GEN
ek kol s kiR Rk s koo skl ol ok ok ok okl kR ool ok kolokk ok
?

LIBRARY /SYSSLIBRARY:LIB.MLB/

$I0750DEF
PSECT MAP_SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:
.LONG 1024
.LONG 1024
RETRANGE:
.BLKL 2 ; reserve iwo longwords
PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER: o ' ,
.LONG 468 -.» itlis oo
LATCH_REG: TenalE L e
.LONG 0
REG_VAL:
.LONG 0
PSG_NUM:
.LONG 1
COARSE:
.LONG 3 .
FINE: ¥oarle

.LONG 7
NAME';I-.g;. B R I S ANSW AV L RUT TN A 2 SR

.ASCID /PSGSEC/

" PSECT' ™**"CODE;EXE;NOWRT ™
ENTRY "PSG *’ENV GEN M<R3,R4,R5,1V>

$MGBLSC_S -
INADR = MAPRANGE,- *
RETADR = RETRANGE,-
FLAGS = #SEC$M WRT'SEC$M EXPREG,-
GSDNAM =NAME ¢ 179 -

BEGIN: T ae
ADDL3 ¥ REMAINDER RETRANGE R3 ;put PSG1 base address in R3

MOVL @4(AP) PSG_NUM ; get PSG number
MOVL @8(AP),COARSE ; get COARSE value
MOVL @12(AP),FINE get FINE value

CMPB #2,PSGNUM ~_; sel PSG1 or PSG2
BEQL PSG2 W

oy
PSG1:
MOVAB 4[R3],R4 ; latch ADDR

MOVAB 2[R3],R5 wnte ADDR
BRW LATCH

48

PSG2: " o
.MOVAB 10[R3],R4 ;latch ADDR
MOVAB® 8[R3],R5" " ;write ADDR

LATCH:
MOVB #.013,(R4)
MOVB FINE,(R5)
MOVB #7014,(R4)
MOVB COARSE,(RS)
DONE:
; BRW LATCH
RET
.END
; $EXIT_S

; .END PSG_ENV_GEN
DRAI1:[THOMPSON.PSG]PSG_ENV_SHAPE.MAR;8

;**$$***************

; AUTHOR: MICHAEL W. THOMPSON
; DATE : 17 JUNE 1987

;***

; DESCRIPTION: Programmable Sound Generator (PSG) envelope shape and cycle
; control (register 15).

; This is a FORTRAN callable macro subroutine that:
; Calling format: CALL PSG_ENV_SHAPE (PSG_NUM,,SH.{\’PE_VAL)

; Selects the PSG1 or PSG2 : PSG_NUM (1or2)
; Selects the shape control : SHAPE_VAL (1 thrurO 17)

Shape control bit functions:

; B0 - Hold

; B1 - Alternate

; B2 - Attack

; B3 - Continue

; PSG UNIBUS address:

; register offset address

; READ PSG1 AO0 AO767724 AXI1FTEA3
; WRITE PSG1 r02 rOT767726
; LATCH PSG1 AQ4 NO767730
; READ PSG1 rO6 NOT767732
; WRITE PSG1 A010 rOT767734
; LATCH PSGl1 AO12 AQ767736

49

« ke ok ok e 8 e ok 3 sk e e e b o b e s s ke s e o e ok e o 3 o e o sl 3 e e 6 ok e o b o 8 3 o ae o e o e ol e Sl e sl s o e ol o e e ke ol e s e s o e ok
’

TITLE P_S_G_ENV_SHAPE

o ke e 3 b 3 3 e o e e o b o e ok o s e ool b e ol e e s e e o e sl o o e s sl o o ol e o b e o o e o e ae s e a ol e o ke oeale ol o ol e o ik o ke ke e
’

.LIBRARY /SYSSLIBRARY:LIB.MLB/

$10750DEF
PSECT MAP_SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:
.LONG 1024
.LONG 1024
RETRANGE:
.BLKL 2 ; reserve two longwords
PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:
.LONG 468
PSG_NUM:
.LONG 1
SHAPE_VAL:
.LONG 0
NAME:

'ASCID /PSGSEC/

jikkik BEGIN PSG_NOISE **#kx
PSECT CODE,EXE,NOWRT
.ENTRY PSG_ENV_SHAPE, AM<R3,R4,R5,IV>

$MGBLSC_S -
INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M_WRT!SEC$M_EXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ; put P5G1 base address in R3
MOVL @4(AP),PSG_NUM ; get PSG number
MOVL @83(AP),SHAPE_VAL ; get shape control value
CMPB #2,PSG_NUM ; sel PSG1 or PSG2
BEQL PSG2
PSG1:

MOVAB 4[R3],R4 ;putlatch ADDR in R4
MOVAB 2[R3],RS ; put write ADDR in RS
BRW LATCH

PSG2:

MOVAB 10[R3],R4 ;putlatch ADDR in R4
MOVAB 8[R3],R5 ; put write ADDR in RS

50

LATCH:

MOVB #7015,(R4) ; select register 15 (envelope shape control)
MOVB SHAPE_VAL,(RS)
DONE:
; BRW LATCH
RET
.END
; $EXIT_S

; .END PSG_ENV_SHAPE

DRA1:[THOMPSON.PSG]PSG_MAP.MAR;12
;***
; PSG_MAP.MAR

; This is a FORTRAN callable macro subroutine

; Creates a global map section PAGE FRAME MAP (PFN).

; This allows users to mag to the physical addresses associated

; with the programmable sound generators.

. Calling format: CALL PSG_MAP
; Programmable Sound Generator (PSG) UNIBUS address:

; register offset address

: READ PSGI A00 AQ767724 AXIFTEA3
: WRITE PSG1 r02 rO767726

: LATCH PSG1 AO4 rO767730

; READ PSG1 rO6 rO767732

: WRITE PSG1 A010 rO767734

: LATCH PSG1 A012 rO767736

;**am*************'*******

; SCRMPSC -- Create and Map Section system service

;***#***********
; see 'SYSTEM SERVICES, I/0' in the memory management services section.

FORMAT (MACRO): $CRMPCS [inadr],[retadr],[acmode],[flags],
[gsdnam],[ident],[relpag],[chan],
[pagent],[vbn],[prot],[pfc]

#******
Arguments required for creating the page frame section:

’
’
?
1

; inadr - Starting and ending virtual addresses into which the
; section is to be mapped. If the starting and ending
; addresses are the same, a single page is mapped.

51

; retadr- Starting and ending virtual addresses into which the section
; was actually mapped.

; flags - Flag mask specifying the type of section to be mapped or
; created. #SECSM_WRT!SEC$M_PFNMAP)

; pagent- Number of pages in the section. Cannot equal zero for physical
; page frame.

; vbn - Specifies the page frame number where the section begins in
; memory. ((base addr. + unibus offset) / bytes per page) where

; base addr. = unibus base addr. UBQ = AX 20100000
; unibus offset = force stick begins at 7O 767724
; bytes per page = 512

.***

! USE BYTE ADDRESSING MODE:
; UBA_BASE =@RETRANGE =AX 2013EFD4

; READ PSG1=@RETRANGE =4X 2013EFD4
; WRITE PSG1 = @RETRANGE+2 = AX 2013EFD6
; LATCH PSG1 =@RETRANGE+4 = AX 2013EFDS8

; READ PSG2 = @RETRANGE+6 =X 2013EFDA
; WRITE PSG2 = @RETRANGE+8 = AX 2013EFDC
; LATCH PSG2 = @RETRANGE+10=AX 2013EFDD

; The following assign should also work for VBN if a literal (#) is
implied:
; VBNI1 = <AX20100000 + 20767724> @-9

’
;***

TITLE PSG_MAP
PSECT MAP_SECTION ,NOEXE,WRT,RD,PIC

MAPRANGE:

.LONG 1024

.LONG 1024
RETRANGE:

.BLKL 2 ; reserve two longwords
REMAINDER:

.LONG 468
LATCH_REG:

.LONG 0
REG_VAL:

.LONG 0

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$IO750DEF

52

PSECT CODE ,EXE,MOWRT
ENTRY PSGMAP "M<>
VBNI1 = <I0750$AL_UBOSP+r0767724>@-9

; Create and map page frame section.
SCRMPSC_S -
INADR = MAPRANGE,-
RETADR = RETRANGE,-

FLAGS =#SECSM_WRT!SEC$M_PFNMAP!SEC$SM_EXPREG,-
PAGCNT = #1,-

VBN =#<I0750$AL_UBOSP+*0767724>@-9

$EXIT_S
.END PSGMAP

DRAI1:[THOMPSON.PSG]PSG_MIXER.MAR;6

;***

; AUTHOR: MICHAEL W. THOMPSON
; DATE : 17 JUNE 1987

;***

; DESCRIPTION: Programmable Sound Generator (PSG) mixer control I/O
; enable. (register 7)

; This is a FORTRAN callable macro subroutine that:
; Calling format: CALL PSG_MIXER (PSG_NUM,MIXER_MASK)

; Selects the PSG1 or PSG2 : PSG_NUM (lor2)
; Selects the noise and tone channels

; to be mixed : MIXER_MASK (*O1 thru A0177)
; PSG UNIBUS address:

; register offset address

; READ PSG1 A00 AO767724 +X1FTEA3

: WRITE PSG1 A2 70767726

; LATCH PSG1 ~O4 AO767730

; READ PSG1 rO6 rMD767732

; WRITE PSG1 AO10 rO767734

: LATCH PSG1 rO012 rOT767736

;**#********

TITLE P_S_G_MIXER

;***

.LIBRARY /SYSSLIBRARY:LIB.MLB/
$I0750DEF

53

PSECT MAP_SECTION,NOEXE,WRT,RD,PIC

MAPRANGE:
.LONG
.LONG

RETRANGE:
.BLKL

1024
1024

2 ; reserve two longwords

PSECT DATA,NOEXE,WRT,RD,PIC

REMAINDER!:
.LONG

PSG_NUM.:
.LONG

MIXER_MASK:

.LONG
NAME:)
ASCID

.PSECT
.ENTRY

468

1

0
/PSGSEC/

CODE,EXE,NOWRT
PSG_MIXER, AM<R3,R4,R5,1V>

$MGBLSC_S -
INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS =#SEC$M_WRT!SECSM_EXPREG,-
GSDNAM = NAME

BEGIN: .
ADDL3 REMAINDER,RETRANGE,R3 ; put PSG1 base address in R3
MOVL @4(AP),PSG_NUM ; get PSG number
MOVL @8(AP),MIXER_MASK ; mixer mask
CMPB #2,PSG_NUM ; sel PSG1 or PSG2
BEQL PSG2

PSG1:
MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2{R3],R5 ; put write ADDR in RS
BRW LATCH

PSG2:
MOVAB 10[R3],R4 ;putlatch ADDR in R4
MOVAB 8[R3],R5 ; put write ADDR in RS

LATCH:
MOVB #7,(R4) ; select register 7
MOVB MIXER_MASK,(RS)

DONE:

; BRW LATCH
RET
.END

; $EXIT_S

; .END PSG_MIXER
DRAL:[THOMPSON.PSG]PSG_NOISE.MAR;7

54

;***

; AUTHOR: MICHAEL W. THOMPSON
; DATE :17 JUNE 1987

;***
; DESCRIPTION: Programmable Sound Generator (PSG)

; This is a FORTRAN calla}ble macro subroutine that:

; Calling format: CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)

; Selects the PSG1 or PS52 : PSG_NUM (lor2)

: Selects the NOISE_FREQ ~ :CHAN_NUM (1,2,3 for A,B,C)
: PSG UNIBUS address:

; register offset address

: READ PSG1 AQO AO767724 AXIFTEA3

; WRITE PSG1 rO2 rO767726

; LATCH PSG1 AO4 AQ767730

: READ PSG1 AOb6 rD767732

; WRITE PSG1 A010 AO767734

; LATCH PSGl1 A012 rOT767736

;***

TITLE P_S_G_NOISE

.LIBRARY /SYS$LIBRARY:LIB.MLB/
$10750DEF

PSECT MAP_SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:

.LONG 1024

.LONG 1024

RETRANGE:
.BLKL 2 ; reserve two longwords
.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:
.LONG 468
PSG_NUM:
.LONG 1
NOISE_FREQ:
.LONG 6
NAME:

\ASCID /PSGSEC/
ook’ BEGIN PSG_NOISE #okskok

PSECT CODE,EXE,NOWRT
ENTRY PSG_NOISE, "M<R3,R4,R5,IV>

55

$MGBLSC_S -
INADR = MAPRANGE,-
RETADR = RETRANGE,-
FLAGS = #SEC$M_WRT!SEC$M_EXPREG,-
GSDNAM = NAME

BEGIN:
ADDL3 REMAINDER,RETRANGE,R3 ;put PSG1 base address in R3
MOVL @4(AP),PSG_NUM ; get PSG number
MOVL @8(AP),NOISE_FREQ ; get CHANNEL number
CMPB #2,PSG_NUM ; sel PSG1 or PSG2
BEQL PSG2
PSG1:

MOVAB 4[R3],R4 ; put latch ADDR in R4
MOVAB 2[R3],R5 ; put write ADDR in R5
BRW LATCH

PSG2:
MOVAB 10[R3),R4 , putlatch ADDR in R4
MOVAB 8[R3],RS ; put write ADDR in R5

LATCH:
MOVB #6,(R4) ; select register 6 (noise gen. control)
MOVB NOISE_FREQ,(RS)
DONE:
; BRW LATCH
RET
.END
; $EXIT_S

; .END PSG_NOISE
DRA1:[THOMPSON.PSG]PSG_READ.MAR;22

;***

; AUTHOR: MICHAEL W. THOMPSON
; DATE :17 JUNE 1987

o s e s e e e ofe e g st fe e sk sk s e sk sk sk Sk ok 3 s sk sk o ok o e ke e sk s e sk sk sk ke s st st st sk st ok o o sk o e e e e ke e e e ke e e sk ok e ke ok e skok ok

; DESCRIPTION: Programmable Sound Generator (PSG) read from selected
register.

; This is a FORTRAN callable macro subroutine that:

; Calling format:
; CALL PSG_READ (PSG_NUM,REG_NUM,REG_VALUE)

; Selects the PSG1 or PSG2 : PSG_NUM (1or2)

; Selects the register number : REG_NUM (1 thru 15)
; Value returned from register : REG_VALUE (0 THRU 256)

56

; PSG UNIBUS address:
; register offset address

; READ PSGl1 00 AO767724 AXTFTEA3
; WRITE PSG1 02 rO767726
; LATCH PSG1 rO4 A0767730
; READ PSG1 ArO6 rOT767732
; WRITE PSG1 ~010 70767734
; LATCH PSG1 AO12 rO767736

;*********#*************%***

TITLE P_S_G_READ

;ma*#*&***

LIBRARY /SYSSLIBRARY:LIB.MUB/

SIOT30DEF
PSECT MAP_SECTION,NOEXE,WRT,RD,PIC
MAPRANGE:
.LONG 1024
.LONG 1024
RETRANGE:
BLKL 2 ; reserve two longwords
.PSECT DATA,NOEXE,WRT,RD,PIC
REMAINDER:
.LONG 468
PSG_NUM:
.LONG 1
REG_NUM:
.LONG 0
REG_VAL:
.LONG 0
INAME:

ASCID /PSGSEC/

PSECT CODE,EXE,NOWRT
ENTRY PSG_READ, "M<R3,R4,R5,IV>

SMGBLSC_S -

INADR =MAPRANGE,-
RETADR = RETRAN

57

APPENDIX F
FORTRAN PROGRAM EXAMPLE

59

N ..lrL\.4b.,:_«!A‘.sk!L.1uMAAJ

PPN

c**********m$$$***

C
Cc
C

PROCESS NAME: ENG_SOUND.FOR
AUTHOR: Michael W. Thompson
DATE: 29 Feb. 1988

c***

DESCRIPTION: This program is an example of using the SEG and is provided as a working
example of generating a particular sound. This program produces a sound somewhat similar to
the engiae sounds produced by helicopters. The sound produced contains a high pitched whine,
mixed with pulsating noise. Adjustments of tone and noise were done by ear. The program
eaamines the torque value, conditions the value for SEG, then changes the frequency component
of the noise simulating pitch blade changes that occur when changes are made with the collective
control.

c***

¢ Subroutines used have the following calling conventions:

(2] OO aao

OO OGGO00660O0

CALL PSG_RESET(PSG_NUM)

CALL PSG_TONE (PSG_NUM,CHAN_NUM,COARSE_AD]J,FINE_ADYJ)

CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)

CALL PSG_MIXER (PSG_NUM,MIXER_MASK)

CALL PSG_AMP (PSG_NUM,CHAN_NUM,AMPLITUDE)

CALL PSG_ENV_GEN (PSG_NUM,CHAN_NUM,COARSE_TUNE,FINE_TUNE)
CALL PSG_ENV_SHAPE (PSG_NUM,SHAPE_VAL)

CALL PSG_READ (PSG_NUM,REG_NUM,REG_VAL)

The arguments have the following significance:

PSG_NUM = PSG number (1 or 2).

CHAN_NUM = tone channel number (1,2,0R 3).
COARSE_ADIJ = coarse tone adjust value.

FINE_ADJ = fine tone adjust value.

NOISE_FREQ = noise frequency.

MIXER_MASK = bit representation for tone or noise disable = 1.
AMPLITUDE = 16 for env. gen. control; 0 - 15 for fixed amp.
COARSE_TUNE = envelope period coarse tune adjust.
FINE_TUNE = envelope period fine tune adjust.
SHAPE_VAL = envelope waveform pattern select.
REG_NUM = register number (0 - 13)

REG_VAL =returned register value.

c***

PROGRAM ENG_SOUND
IMPLICIT INTEGER (A-Z)
REAL*4 T1,T2,T3

REAL*4 PERCENT_TORQUE,OLD_TORQUE
REAL*4 TORQUE

61

INTEGER*4 PSG_NUM,CHAN_NUM

INTEGER*4 COARSE,FINE,NOISE_FREQ

INTEGER*4 AMPLITUDE,SHAPE_VAL,COARSE_TUNE
INTEGER*4 FINE_TUNE,MIXER_MASK

INTEGER*4 STATUS

INTEGER*4 BINARY_INTERVAL(2)

LOGICAL DONE
CHARACTER ascii_interval*10/'0 0:0:0.3%

C... BEGIN Engine sound

C... Initialize clock

T1 = SECNDS(0.0)

c... open input data file

open (unit = 1,file = 'eng_sound.dat',status = 'OLD')

c... read the data

read (1,1001)PSG_NUM,CHAN_NUM,
COARSE,FINL, 10ISE_FREQ,
AMPLITUDE,SHAPE_VAL,COARSE_TUNE,
FINE_TUNE,MIXER_MASK

1001 format (110)

201

¢ Use the print statement for debugging and variable examination; otherwise omit comment.

Cc
c
c
c

CONTINUE

print *, PSG_NUM,CHAN_NUM,
COARSE,FINE,NOISE_FREQ,
AMPLITUDE,SHAPE_VAL,COARSE_TUNE,
FINE_TUNE,MIXER_MASK

C Call macro programs to reset registers then get X & Y values

200

continue
CALL PSG_MIXER (PSG_NUM,MIXER_MASK)

c... Set up rotor noise sound

chan_num =1

amplitude = 16

CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)

CALL PSG_ENV_GEN (PSG_NUM,COARSE_TUNE,FINE_TUNE)
CALL PSG_ENV_SHAPE (PSG_NUM,SHAPE_VAL)

CALL PSG_AMP (PSG_NUM,CHAN_NUM,AMPLITUDE)

C... Set up tone sound

chan_num =2

amplitude = 4

CALL PSG_TONE (PSG_NUM,CHAN_NUM,COARSE,FINE)
CALL PSG_AMP (PSG_NUM,CHAN_NUM,AMPLITUDE)

62

(e}

... Set up background noises
chan_num=3
amplitude =7
CALL PSG_AMP (PSG_NUM,CHAN_NUM,AMPLITUDE)

I=0

c... Check the PSG r ;isters.

print *''

do while (I .LT. 14)
CALL PSG_READ (1,L,REG_VAL1)
CALL PSG_READ (2,LREG_VAL2)
PRINT *, 'REG 'I,' = \REG_VAL1,REG_VAL2
[=1+1

end do

c.. Convert ascii time to binary time
status = sys$bintim (ascii_interval, binary_interval)
if (.not. status) call lib$stop(%val(status))

c.. Schedule a wakeup
status = sys$schdwk (,,binary_interval, binary_interval)
if (.not. status) call lib$stop(%val(status))

¢.. What for completion
do while (.not. done)
c.. Let's hibernate
status = sys$hiber()
if (.not. status) call lib$stop(%val(status))

c... Check the value of torque
print *,'noise freq = ',noise_freq
print *,'Enter torque as a decimal value less than 1 ="'
read (5,1002)torque
1002 format (f4.2)
c... Check to see if the torque has changed.
if (old_torque .NE. torque) then

percent_torque = torque * 100.
if (torque .L'T. .33) then
noise_freq = percent_torque / §.
CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)

else if (torque .LT. .66) then
noise_freq = perceat_torque / 8.
CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)

else ! torque .LT. .99
noise_freq = percent_torque / 8.
CALL PSG_NOISE (PSG_NUM,NOISE_FREQ)
end if
end if

63

old_torque = torque
end do
CALL EXIT

STOP
END

64

